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ABSTRACT

An integral relation has been derived describing the pressure
due to the reflection of a plane acoustic wave of arbitrary wave form
incident on a two dimensional curved surface with plane asymptotes.

The results were applied to the problem of sonic boom incident over a
reflecting hyperbolic surface. It was found that singularities or
"focal points" occur at which the pressure becomes infinite according
to linear theory. A criterion for these focal points to occur was
developed and the locus of singularities was determined. The pressure
disturbances in the neighborhood of these focal points was investigated
for incident step function, linear and N-wave forms, It was found that
in the case of the N-wave the major contribution to the disturbance
near the focal points comes from the reflection of the discontinuities

at the leading and trailing edges of the incident wave,



I. Introduction

An assessment of many of the effects of sonic boom involves a basic
knowledge of the manner in which pressure pulses are reflected from
solid surfaces. Normally the disturbances occasioned by sonic boom are
of acoustic proportions, that is to say they are small enough to be
governed locally by linearized theory. However the overall effects of
these disturbances may become large owing to two factors both of a
cumulative nature. Thus a disturbance incident on large areas such as
the side of a glass walled building may develop total integrated forces
which are large enough to do damage. On the other hand, reflections
from a large curved surface may be focused into a small region so that the
cumulative effect is one of high concentration of acoustic energy with
very high local pressure. The reflection by a plane surface with a
single sharp bend raises the local pressure by a factor of two.1 In
comparison the focusing of disturbances by a suitably curved surface
concave to the incident wave may give rise to pressures which are
locally ten to one hundred times the disturbance of the incident wave.

It is this latter class of phenomena that are the subject of this paper.

Figure (1) depicts a typical wave pattern generated by an aircraft
in supersonic flight over a valley or depression in fhe ground. The
usual reflected pattern which would be present over a plane surface is
omitted in this case since it is assumed that the presence of curvature
causes continuous pressure variations behind the incident wave rather

than the reflected discontinuities found over plane surfaces. To



facilitate an analysis of the situation depicted in Figure (1) a mathe-
matical model is adopted which will retain the principal physical fea-
tures of the reflection. The model consists of a distribution of plane
waves incident on a two dimensional curved surface with plane asymptotes.
A simple example of such a surface is the hyperbola xy = 1 to which the
general analysis developed here will be applied. This latter case is

illustrated in Figure (2).

Typical of incident sonic boom waves are the "N" waves illustrated
in Figure (1) having a discontinuity at the leading and trailing edges.
Since the magnitude of these disturbances are usually acoustic in level
the discontinuities are in the nature of acoustic shock fronts whose
propagations are governed by the relations of geometrical acoustics.2
As briefly mentioned above, owing to the continuous curvature of the
reflecting surface out to infinity the reflection of a discontinuous
wave front shows up, not as a discontinuity but rather as a region of
rapidly varying but continuous pressure rise as indicated in Figure (3).
Far from the wall the variation becomes increasingly rapid approaching
a discontinuous jump as we go to infinity losing the details of the

local curvature.



II. Basic Equations

The continuous pressure perturbation field behind the incident

wave front is governed by the acoustic wave eqﬁation

2 2 2
§_§.+ E_g. - li.i_% 1)
X oy Co at

For convenience we introduce the time-like variable z = Cot and write

Equation (1) in x,y,z space

2 9?
L) = Vp-=% = 0 (2)
0z
Volterra has formulated the wave equation as an integral equation.3
Briefly, his method was to apply Green's theorem to a volume V in x,y,z
space, indicated in Figure (4), bounded by the data support s, the
characteristic cone I'y and a cylinder C of infinitesimal radius parallel
to the z axis. The cylinder C is introduced to exclude singularities
from the interior of the volume. Since the wave equation (2) is self-

adjoint, Green's theorem reduces to:3

Ji@-stmiav = [(p 2 - v IE) do &
o=s+ctl

The "conormal" v for the wave equation is the reflection of the inmer
normal in the plane z = const, The characteristic cone T is represented

by

3.



r = /(x-s)z + (y--n)2 = =(z=7) (4)

and we note that on T the conormal v lies in the characteristic cone.

Finally, the adjoint function v is chosen to satisfy
L(v) =0, wv=0onT )

A function satisfying relations (5) was determined by Volterra

A, [
vetn|-Z+ [ 2 (6)
1
z = z=[, r2 = (X')2 + (y')2
v ]
x = x=E, y =y=-n

This result for v is substituted into the integral relation (3) and the
limiting process of allowing the radius of ¢ to tend to zero is per-
formed. In the latter operation two types of data support must be
distinguished, those which intersect the cylinder C in a closed curve
Cgs Figure (4) and those having a portion of their surface parallel to
the z axis as in Figure (5)., In the second case when pt P lies on the
vertical portion of the data support only a segment of the cylinder C

lies in the interior of V. Let this segment be comprised of the circular
segment Csn of angle Nnm. If the point P does not lie on the data sup~-

port the case reverts to that of Figure (4). The introduction of v

into Equation (3) then yields:



Nw ? pdz = [ (p %%-- v %%-) ds )
8

&
8

This last result is actually equivalent to a representation of the

impulse, Differentiating to obtain an explicit relation for the

pressure:
- L2 v_,3
pEnt) = oz Py -vgs) ds (8)
v - 1, ¢ = ES, n=n Up(zn) on s

2, p(g,n) not on s

Figure (6) represents the data support and characteristic surface
I in x,y,z space corresponding to the problem of a distribution of
plane waves incident on a hyperbolic cylindrical surface. The data
Qupport consists of the surfaces Sw, Si and S_. Sw represents the
hyperbolic wall in space~time and on Sm the conormal Y and normal M

coincide. S, represents the locus in space~time of the initial wave

i

front and is a plane surface with normal n, at 45° to the z axis. The

conormal vy lies in the surface Si° Finally S_ is a surface perpen-

dicular to Si' Its presence is required to close the surface bounding

V since the bicharacteristics or generators of I' also make an angle of

45° with the z axis. The intersection of §, and T is thus parabolic a

i

consequence of the assumption that the incident disturbance is acoustic

in level. The distribution of p on 5 specifies the pressure distribution



of the incident plane waves and is considered to be given. It is evi-

dent that v lies in S_ as indicated in Figure (6).

III, Boundary Conditions

A condition on the pressure at the surface Si is provided by the
theory of geometrical acoustics applied to the initial plane discon-
tinuity. Thus the pressure jump across Si is found to be constant,
Let this pressure be Po' Since the region ahead of the initial wave

front (or below it in x,y,z space) is undisturbed we have
p=P onS§ 9

On the wall the boundary condition on p may be determined from the
normal component of the momentum equation for an acoustic disturbance
under the restriction the velocity normal to the wall is zero. The

resulting boundary condition is:

p . 3 _ 0 on Sw (10)

An additional boundary condition on the pressure at the wall
immediately behind the initial wave front is provided by the require-
ment that the flow at this point be tangent to the wall, Thus, as the
front is approached along the wall the pressure disturbance approaches

the value of 2Po’ ie:

p(x,y,-x) = 2p_ at intersection of § and S (11)

i



Finally, letting s be a coordinate measured in the direction of
v, on S_as shown in Figure (6) the function pm(s) on S_ is given.
This represents the given pressure distribution of the incident plane

disturbance, i.e.:

P =p,(s) onsS (12)

o0

IV. The Integral Pressure Relation

The boundary conditions provided by relations (9), (10) and (12)

are substituted into the integral equation (8).

P(E,L,) = W3t ) s, p(x,y,2) 73— dS + Po£ 3;; S - é (p,(s) 55 = v 35)ds
i ©

(13)
As yet a specific set of coordinate axes has not been chosen, For

convenience in evaluating the integrals over S, and S_ the x axis is

i
chosen parallel to the direction of propagation of the incoming wave in
physical space. The origin of the system is chosen so that in the

absence of a wall the incident wave front would pass thru the origin at

t=0. Then, noting that v=0 on T

Y4 Y2
f %%— dS = f f %%— dvi dy = f vim dy - f Vi dy
Si i Si i Y3 yl

where ( )wi’ « ) o denote evaluation along the intersections of

i

Si’ Sw and S,, S_ respectively. Referring to Figure (6), ( )1, ( )2

i,



represent quantities evaluated at the intersections of Si’ Sm’ I' while

( )3, ( )4 represents evaluation at the intersections of Si’ S,s I
Turning to the integral over S_ we first consider
y
3p,, 41 s(T)
—— N = EB.
f V3 as f f vV 3s ds| dy
S, yg| 0
Integrating by parts and noting that p_(o) = Po
y y
ap,, 4 4 s(T)
v
é’ v 5 dS —Pof vimdy—f {pwa—s-dsdy
o 73 V3
With the incorporation of these results Equation (13) becomes:
1 72 3
9 v v
p(gsn,z) = ﬁ'a‘f{f p(x,y,2) 5-d8 - P [ v . dy-2[p(s) 5 dS}
S y S
w 1 ©
(14)
Since the incident pressure wave P_(s) is assumed independent
of y the integral over S_ may be further simplified:
s(T) nta(s)
oV
) p (s) %%»ds = | p.(s) / .sg-dy ds (15)
S, s=0 n-a(s)

where a(s) = /z'(s)2 - x'(s)2 and 3v/3s evaluated an S_ 1is:



Performing the integration with respect to y or equivalently with

¢
respect to y' and letting x go to infinity:

-
/2"y ex )? .

— ' 2 v 2
X' 00 | 21 /@Yoy egh? | HED)

I,y = GEHEH?

-n/V2 , yi = const.

In which we have noted that z'/\/(z')2 = -1, Equation (15) then

becomes

(g+g) /2

7 [ p(s)ds = & p (5+E)
o]

m'v

[ p & 12
. ¥

where
1, 3 = /"%’

2, v, = const.,

(16)



and (§+E)/Co is the time measured from the arrival of the initial

wave front at (g,n).

Considering the integral over Sw in Equation (14) we note that

for any cylindrical surface y = y(x) we have

v ov v
In d§ 5-}7 dxdz - % dydz
so that
v z'/r2
FrY d§ = ———————o [(y=n)dx~(x- ddyldz Qa7n
12 2
V(z Y =r

Finally, noting that Voi = 0 at Y1 and Yy

Yy Yy a
3 [ v.dy = [ —L— (18)
3C wi 2 2
¢ Y1 Y1 /(x+;) ‘rwi

Substituting the results of Equations (16), (17) and (18) into
Equation (14) for p(£E,n,Z) an expression is obtained for the pressure
field resulting from an incident plane wave reflected by a two dimen-

sional surface of the form represented in Figure (6).

10,



11,

y
2 P, 2
P(EsM, D) = o P (EHE) - 2 [ —

Y1 /(x+;)2—rii

A
....l_i_f f 2 p(x,y,2) [ (y=n)dx~(x~g)dyldz 19)
Nw 3¢ S 20,22
w  rv(z ) -r

The first term on the right in Equation (19) represents the pressure
of the incident disturbance as it propagates over the point (g,n).
The remaining terms represent the contributions from the region of

the wall within the zone of dependence of (g,n,r).

As it stands Equation (19) is not yet a completely explicit
relation for the pressure but rather a representation of the original
partial differential equation in a more convenient integral form.
This is because the integral over Sw cannot be evaluated untillthe
pressure on the wall is known. To determineapm on the wall we note
that when §,n take on values at the wall Equation (19) becomes an
integral equation for P, the solution of which allows the determina-
tion of the last integral in Equation (19) for arbitrary £,n,z thus

yielding an explicit relation for p(£,n,l).



V. Reflection from the Hyperbola xy = 1

Equation (19) will now be employed in treating the specific case
of a plane wave propagating along the x axis with a step function

pressure profile

P, = POH(x+z)

incident on the surface xy = 1 in the first quadrant. A representa-
tion of the problem in x,y,z space is illustrated in Figure (7).
Comparing this with Figure (6) it becomes evident that there will
always be a region of Sw extending to infinitely along the x axis,
and y; = «n so that the integer M in Equation (19) is set equal to 2,

(See Equation (16)).

To determine P, let £,n take positions on the wall, i.e. £ = 1/n.
Similarly since the surface integrals are carried out along the wall

we must set y = 1/x., Then, Equation (19) with M=2, N=1 becomes:

Po dx
p(E,1/E,8) = P - — ] ———
wi le(x+c)2-rw12
1 2 P (x,1/x,2)
- l”%_ f { z (g'g) S A dxdz (20)
™o S ExX"r 1.2 2
w V(z ) =r

12,



where f denotes integration along those portions of the intersection
wi
of So and Si within the characteristic cone T or "zone of influence'.

Integrations are to be carried out in the sense of increasing x.

Once Py is determined by Equation (20) the pressure at any
arbitrary point in space-time is obtained by letting £,n,i take
independent values while the variables of integrations are, of course,

still related by xy = 1, Thus, with M=2, N=2;

PO PO

p(&,n, L) '—"2"""2—,",_{1 ——
d V(z ) -1

wi

dx/x2

(21)

zfpw(x,llx,z) [(%-« n) + 53%& dxdz
I R x

3
==/
s, 2/ 22

X4

1
T

Equation (20) for P, is sufficiently complex to discourage
attempts at an analytic solution at this stage although a numerical
solution with the aid computers should prove reasonably straight=~
forward., Nevertheless a considerable amount of useful information
may be derived from Equation (21) if we introduce some reasonable’

approximations for Py Specifically we shall consider values of

E,n, ¢ for which the radical /(z')z-r2 occurring in the integral

terms remains small over most of the range of integration. Under

13.



14,

these circumstances the contributions from the integrals should be
large and in addition we are able to use the simplifying approximation

x+{xr. To derive the conditions under which this approximation is

valid we note that on the characteristic cone /(z')z-r2 = 0, There-
fore this radical will be small on those portions of Sw which lie

near the surface I's From Figure (7) it is evident that when the

intersections WI and I'I lie close to each other the value of /(z')z-r2
will be small over the region Sw‘ Furthermore the range of z in the
integral over Sw is restricted to values near z = -x, and it is
reasonable to assume that in this instance for c<x<bh

pa(x,llx,z)zpw(x,llx,-x) = 2p_ (22)

Returning to Figure (7) and considering the region Sw2 we see
that over a large part of this region the range of z is large and
in fact becomes infinite with x., However, over this region the slope
of the wall is vanishingly small as x becomes infinite, allowing the
introduction of a convenient approximation to the disturbance pres-
sure on Sw2‘ Referring to Figure (8) let us assume that for x>xp
the slope of the wall is so small as to cause negligible disturbance.
The curve E’represents the limit of the range of incluence of the
wall section between x, and xpe Outside this range a given point in

space will be influenced only by the section of the wall for which



15.

x>xp and since this influence is assumed to be negligible the pressure
disturbance beyond ¥ will be Po' The ﬁressure distribution along the
wall is also illustrated in Figure (8)., Between X, and X, cosf the
distribution along the wall is approximately ZPO. Beyond X, the
disturbance level falls to Po. As both X, and xp move out to
infinity along the wall the region between X, and xa,becomes

vanishingly small while the disturbance beyond x,_ drops rapidly to

Y

Po. Thus, over those sections of Sw over which the slope of the

2
wall is small the disturbance is approximately Po except for a
small region near the wave front where the pressure is approximately

2P°. Translated into x,y,z space this means that in the field

described by Figure (7) we may adopt the following approximations.

= - < <

Py 2Po on Swl c Sx2b

P, 2Po on Swz a x 3 x 23)
= S

P, Po on Sw2 xa X < ®

In keeping with the specification, made in the introduction, that the
reflecting surface has plane asymptotes we may assume that for x>xa
the wall is sufficiently near the x axis to make the approximation
(y-n)dx - (x=£)dya’-ndx. Introducing these approximations into
Equation (21) we are now able to perform'the integrations with
respect to z. After carrying out the differentation of the last

term with respect to T Equation (21) becomes:



P by %al® P dx
PEmD = 2= ([ 4 +f (=2 )
2

lew aw x @ 2,772

b(2) %a® 2P (xt0) [(Q-nx)xt(x=£)] = P_(x+g)(-n)dx
+ [ + I 2 : dx | + [ 2 _f..._.____
c(z) a(®) rzxz/(x+;)2~r2 x, (@ rz/(x+;)2-r2
ax (1-nx_)x_+(x_-£)
a 2 2 1 2 a a 2
+ P 3T /(xa+r,) -(xa-t’,) -G - n) [ 2[( ~ )z+(_1_ _ )2] (24)
a xa xa £ xa n

in which we recall that th$-limits a,b,c are the values of x at

which the curves WI and Tl intersect and as such they are functions

of £,n,t. We also note that /(z')z-r2 = () at these points since they
lie on T, X, is the value of x at which I'I intersects the x axis,

thus we find that:

2

- n I 2
*a 2(c+8) 2 (25)

It is assumed that beyond the point x=x_ W1 is approximated by the
x axis as a result of which we may set

2

S (x-£)2+n2

X>X

/(at)2mr? 2 V2(4E) (o)

16,
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The last integral appearing in Equation (24) may, after a good deal

of algebra, be directly evaluated upon writing in the form

P o
J (X+:)(-n)dx P
- (26)
TG %, Tty Sl =w °

In the same manner we evaluate:; the third integral in Equation (24):

Po < dx Po"
=

/
v2(g+E) X, x2 (x—xa) ZXZ/ZVZ(;+£)

(27)

Over the range of computations considered in this paper this last
term will be found to make negligible contribution to the pressure.
Basically this is because we have:

dx dy

le(x-xa) /(x—xa)

on the wall,

When the assumption that WI may be replaced by the x axis is valid
we have dy<0 and the integral becomes small. The term in axa/a;
is also found to be small over the range of computations considered

here. The remaining integrals are evaluated over ranges for which

/(x+;)2—r2 is small. Consequently:



18,

x+ 1
r x4, -—%-::;;E
T

as they appear in the remaining integrals, On the hyperbola y = 1/x

the quantity (x+;)2-r2 takes the form k Z:B(x)/x2 where z? represents
a third degree polynomial., The zeros of this polynomial are thoée
points at which TI'l intersects WI, ie. at the intersection of Sw’ r
and SI. These are the points x = a,b,c (assuming that £,n,z are in

the range for which three intersections occur); consequently we may

write

X = (x-a) (x-b) (x~c)

or more explicitly:

%—/2(;+£)(a-x)(b-x)(x—c), c<xSb

VX+sF-r* =

=

Y2(g+E) (x-a) (x=b) (x~c), a<xix

Finally, assuming § #0 and splitting the factor 1/x(x+¥) in

Equation (24) into partial fractions we obtain

H, = (1+ng)H
b2 } 240 (28)

pE,n,z) = Po { 1+ T

where



(E=L-x)dx
xv (x=a) (x=b) (x-c)

==}

]

s
[e BN - of

+
o M

X T+E
H, = —1 ? + [ (e - X
2 VI(EHE) ¢ a  (x+2)/(R-a) (x<b) (x=0)

Hl and H2 may be evaluated in terms of elliptic integralsa for which
tables are zwa:l'.kable.5 After some algebraic manipulations Hl and H2

may be reduced to the following forms:

B —
Hl V(f-h‘;)(a—c) [F(¢ k)"'F('"/z K)"W(”’ a=c ° k)

- c(a—c) -1 fa X -a ]
—n(n/2, == » K) + S5 (7 + tan \[b G -b)(x ) )

-F(¢, k) - F(w/Z,K)E (29)



20,

T+
0) T +5 b-c b=c

-
2 V(C+E)(a-c) et [:"(¢’ T sk ) + w(n/2, - =T ok )

H

?(C+§)(a-c) =1 [(ctp) (atp) (x_-a) -1/ (att) (b+T) (x_-a) (x_-b)
* (I N : BIWX"8)  _tan v[ a a

T &,5) (x_-©) () (x =) (a-b)”

=F(¢,k ) ~F(n/2,k )}' (30)

where F(¢,k ), n(¢,a2,k ) are the elliptic integrals:‘

de

£(o,k ) = (31)

Q “y®-

/1-k 2sinZe

de

n(s,02,k ) = (32)

O 8-

(l—azsinze)/l-k 251n0

X -
with ¢ = sin- 1)/ -2 , k2 o b=c
X - a~c

To obtain the above expressions for Hl and H2 use has been made of
addition formulas relating elliptic integrals with different argu-
ments. These have been introduced in order to obtain ranges of a2

and k for which tables are available,

]



The solution given in Equation (28) is valid as long as S#0 a
restriction introduced when 1/x(x+%) was split into partial fractionms.
When ¢ is near zero, Equation (28) becomes inconvenient for computa-
tion and a modified form of the solution must be used. Thus,
assuming z may be neglected compared to x and proceeding from

Equation (24) as before we obtain for zx0:

nJl+gJ2
P(E,n’C) PO {l + "'"'_";—— } > Cf{,’o (33)
where
X 5
Jl‘ . 1 ? . fa (x - i;)dx
V2(t+E) | e a x/(x-a)(x-b)(x~c)

J = 1 b+ a dx }
2 v2(L+E) [ c a xz/ix-a)(x-b)(x-c)

which may again be evaluated in terms of elliptic integrals

21,



22,

’ 2 1
Jy o= (z+E) (a-c) { [F((b k) +F(n/2,k ) - n(¢, ._._c. Lk )

(x_-a)
- c{a-c) %4 -1/ ac a

-F(¢’k ) - F('"/zsk ) }

- 2  J1 b=c) (a=c) =(b-c)
Iy \}(z;+z>(a-c){c2 Q+ =3 m(n/2, === )

=e70) p(aj2,k ) - 2 Rr/2x ) + Pk )
2abC 2bC

(x-a)
a=-c -l
(¢’ac’k)+ \/ \/b(x-b) (x-c)}

with

¢ P
E(d,k ) = | /1-k%sin®p d¢

o]

and F,n,¢,k defined as before in Equations (31) and (32).



23,

Vi, Focusiqg;gf Pressure Disturbances

Before turning to the computation of the pressure predicted by
Equations (28) and (33) we shall in§estigate one of the more impor-
tant properties of these solutions, namely, the focusing effect of
the curved surface on the reflected pressure distribution. This
property is revealed upon examination of the integrals in Hl’ HZ’
Jl’ J2' Thus, when the points a and b coincide we have

YV (x=a) (x=b) (x=c) = |a—x|¢x-c

and the integrals become singular, yielding infinite pressure for

the corresponding values of Esnyz . The physical significance of
this singularity may be appreciated with the aid of Figure (9) which
illustrates theuprojection of WI and I'T on the xy plane for the

case £=1, n=2 and g<l. The coincidence of a and b means that WI and
'l are tangent at the point of coincidence. Now in the general case
a,b,c represent three discrete points from which a reflected pressure
disturbance will arrive at E,n simultaneously at the instant 7., How~
ever when a and b coincide a disturbance arrives at En simultaneously
from an infinity of points in the neighborhood of the point of tan-
gency. We must note that the order of contact of WI and I'I is a
factor of prime importance. This is illustratedvby the fact that
when b=c no singularity occurs although WI is again tangent to TI.

This comes about because the range of integration of the first



integrals appearing in H and J extends from ¢ to b and hence shrinks
to zero while the integrals from a to X, do not contain the singu-

larity of the integrand at x=b,

It is of interest to determine the locus of all points (£,n,Z)
at which singularities of the pressure occur, Although a linear
theory is no longer valid in the neighborhood of these points the
locus would provide a useful indication of where and when reflected
pressure disturbances are large enough to give cause for concern.
Specifically we seek values of E,n,z for which a=b., Substituting

y = 1/x into the expression for (x+?;)2-r2 we obtain

tr)ier? - ZEE) 23 (34)
X
=3 3 g=£ “2 . 2 n 1
¥ = x+ G5 * YIen * T I

The polynomial Z? shall be represented simply as:

23 = x3+dx2+£x+f (35)

Since a, b and c are solutions of z? = 0 we seek value of g,n,g
for which there are three real roots of z?, two of which are equal.
From the algebraic theory of cubic equations we know that for this

condition to obtain we must have for the discriminant
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Tty = 0 (36)

where

¢ o 3=d’ _ 2d%-0sd+27%
3 27

Before carrying out the substitutions indicated in Equations (34) to

(36) it is much more convenient to introduce the variables;

R = -1/2(z+E)

(37)
§ = (z=£)/2

R = constant represents lines parallel to S_ while S = constant

I
represents lines normal to SI' Maintaining R constant while varying
S translates the parabolic curve I'Il without changing its shape. In

terms of these new variables we have;

d. = S + n2R

2 = =2nR

f = R

and Equation (36) becomes:

2 3

R2(n%s + n3) + R(2n252 + 9ns + %l) +83 = 0 (38)
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This last equation is most conveniently solved for R as a function
of n and S since it is only quadratic in R, The two solutions

obtained resulted from the fact tﬁat xy = 1 has a second branch in
the third quadrant while the characteristic cone z'z-rz = 0 has two

sections given by z' = ip. Choosing the solution for R corresponding

to the tangency of T'l and WI in the first quadrént:

R = = Q(ns) + Vaz(ns)-4(ns)3(1+ns)

3 (39)
2n” (1+ns)
Q(ns) = 2(ns)? + 9(ns) + 27/4
By eliminating R between Equations (37) and (39) L and & may be
written in terms of n and the parameter ns.
3
t = (ns)/n = n” F(ns)
(40)

E = =(ns)/n - n3}’(ns)

where

Fns) = - (4ns/2
O+/Q% 4 (ns) > (1+ns)
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For a fixed value of n we assume values of the parameter ns and com-
pute the corresponding values of 7 and £. The results yield a curve
in the plane n = constant along wﬁich the pressure predicted by
linear theory becomes infinite, i.e. along which focusing occurs.

For convenience the function F(ns) is plotted in Figure (10) and
curves of ¢ vs. £ for focusing are shown in Figure (11) for 12n23,
To the left these curves terminate on the reflecting hyperbola
itself. Beyond the right hand limit tangency with a and b coincident

is no longer possible.

VII. Time Dependence of the Pressure

From Figufe (11) we see that the locus of singularities form a
surface in £,n,z space. It is instructive to choose a point below
this surface i.e.: before the pressure singularity occurs, and to
calculate the pressure as a function of time as the singularity is
approached. For this purpose we choose the point £,n = (1,2).. At
this location the singularity occurs at ¢ = 0, The projection of
I'l for this case was illustrated in Figure (8), Thus at [ = -=,08
we obtain curve A indicating that at this instant the point (1,2)
receives the initial reflection from the region of high curvature of
the hyperbola. Beyond this value of & we may expect a rapid increase
in pressure to occur since a small increase in § brings a large
section of WI within the zone of dependence of (£,n, ). The reflected

component p, = p(EnC) = H(Z + E) due to a unit step function
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disturbance (P-o = 1) has been computed from Equation (33) and plotted

in Figure (12).

VIiII. The Linear Pressure Pulse

In the last section the reflection of a step function pulse
was considered., In this section we consider the reflection of a

second basic pulse specified by:

P, = (¢ +8)H(g +&) (42)

i.e. a disturbance which varies linearly with unit slope behind the
initial wave front. In this case the initial pressure Po on SI is
zero., In keeping with the assumptions which lead to the approxima-

tions for P, given in Equation (23) we obtain

= <x=2
P, 2(z#x) on S , c2x<b

= L€
P, 2 (z+x) on Sw2 a..x..Xa
P, = (z4x) on SwZ Xa<x<~

Substituting these values of P0 and P, into Equation (19) we again

obtain a result valid for the range £,n, ¢ for which z'z-r2 is small.

X e ———————
b a = 22
+ 1 v (x+ -
P, o) = SE-Lafagf 4] Larrpor
[ a X r

[y=n)dx=-(x=-£)dy] } (44)



Over the last interval Xa§x<w the same approximations used in obtain-

ing Equation (26) are again introduced

p Y (x+ ;)z-r2
[ ——r—

[ (y=n)dx~(x=£)dy
X r
a
AETS | s 7 (g +£)
-nv2(g +E f — dx = =~ 5 (45)

X, (=)’

Integration over the remaining intervals in Equation (44) may be
performed with the aid of a further approximation, From Figure (13)

it is evident that for values of £,n,; of interest here the sections

of the wall included in the intervals c3x3b, anS.Xa may be approximated
by two linear segments passing through the end points Xa,A and b,c.

These segments are represented by:

y = =x/bec + (btc) c<x<b
(46)
= o’ <_<_
y x/aXa + (a+Xa) asx Xa

Again letting rzﬁs (x+ c)z in these intervals and introducing the

results of Equation (45) we obtain
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b
p(Eyn, T) = (g+E) = (Bl.+l- E_n [ Y (b-x) (x~c)

c c 2 dx
c (x+z )
47)
X re———
- (l_~+ 1__E&8 _ n 2 7Em -2 dx
X a ai 2
a a a (x$z )

Evaluation of the integrals in Equation (47) then yields an explicit
expression for the pressure distribution due to the reflection of a
linear pulse of unit slope over the range of £,n,; such that

z'z-r2 is small on § , for c<x5b, afxﬁxa and y-nx-n for X_Sx<=.

p(E,n, ©) = (c+E) + g+nbC-(b+c) | [btg 1][1 R La.x S
2 (bC)2

E+ngX - (a+X ) +
—2 A -1 1-/2-"“-15— (48)
Zﬁixa) av

The above pressure is again computed for the same region of £,n,z

as in the previous case i.e. (E,n) = (1,2) and ¢ near zero. TFigure
(14) presents the contribution of the reflected pressure disturbance
i.e, PL = p( E,n, L) = (CH+E)H(Z + E) to the pressure field. From
Equation (48) we see that there is no singularity at [ = 0 as in
the previous instance although there is a magnification of the pres=-

sure due to the focusing effect of the hyperbola.



IX. Reflection of an N Wave

The results of sections (7) and (8) may be combined to study the
reflection of the N wave typically encountered in sonic boom phenomena.
Thus, an incident N wave of "duration" g, may be constructed of unit

step functions and linear pulses:

2(; +E+E )
Paten, © = B01 - 2EER a4y 4 11 4 R g ety
[+ (e}

(50)

A sample‘calculation has been carriediout for Co = ,02, (&,n) = (1,2)
and -,1< §<0.. This represents a scale typical of the reflection of
a sonic boom disturbance from a valley floor or from the side of a
mountain. The result is given in Figure (12). From an examination

of these results in the light of those presented in Figure (14) it is
seen that the pressure field near the "focal point" is dominated by
the reflection of the step function pulses Po(H( C4+E) + H(E +&+ ;o)]

at the beginning and end of the incident N wave. The linear component
representing the structural details of wave contributes relatively

little to the pressure in the neighborhood of the focal point,

X. Conclusion

An integral relation has been derived describing the pressure due
to a plane wave of arbitrary wave form incident on a two dimensional

curved surface with plane asymptotes. Pressure is given in terms of
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integrals involving the pressure distribution over the surface. In
princiﬁie this relationship represents an integral equation for the
- pressure on the wall., Its form is such that this integral equation
may be solved by numerical techniques, The integral relation would
then become a direct expression for the pressure at any point in time

and space,

From the form of the integral equation in the instance of reflec~-
tion from a hyperbola it was found that singularities in the pressure
field occur when the characteristic come in xyz space is tangent to
the intersection WI in such a way that WI lies inside the cone near
the tangency point. These singularities represent focal points inas-
much as they are locations which are simultaneously influenced by

reflection from a continuum of points on the reflector,

Depending on the magnitude of the incident acoustic wave the
linear theory of course cannot bé extended into the immediate neighbor-
hood of the "focal points". However, the location of these singu-
larities does serve to indicate the region in which pressure pulses
are likely to be amplified beyond what would be ordinarily expected,
In studying the reflection from a hyperbola it was found that
singularities may oécur along a surface iﬁ xyz space rather than

at a single point.
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Applying the results of the theory to reflection of an N wave
from a hyperbola it was found that in the neighborhood of the focal
points the principal contribution to pressure came from the reflec-
tion of the discontinuities at the leading and trailing edges of the
wave. The continuous component representing the structural details
of the incident wave was found to contribute little to the pressure

near the focal points in xyz space.
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Fig, 3 Reflection of Plane Wave



3i0ddng e3jeq pue suo) d213sTIdaovavy) % °314g

140ddnsS
viva

Awaﬁawv 2



81IXe 2z 03 Tolleaed 1xoddng ezeq ¢ °Std

1d0ddns
vivd ~




wi Yi

Tl

Fig. 6 S, Si’ T" in XYZ Space
w




Fig, 7 1Incident Wave Propagating Parallel to an Asymptote of a Hyperbolic Wall
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Fig. 8 Wave Pattern and Pressure Distribution
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Fig. 11 Locus of Singular Points
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Fig. 13 Linear Wall Approximation
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